

L2 BeamLines

A. Cerri

The Problem

- b-tagging and possibly B physics will need knowledge on the PV position at L2
- Current assumption in most L2 studies: PV=(0,0,0)
- Mechanism to get beamlines in L2 not yet clear. Two possiblities

Compute elsewhere	Compute in L2
 Algorithm can be as complicated as we want Consistent BeamLine across L2 PU Full offline performance can be achieved 	 BeamLine readily available, fast update Quasi-offline performance Partially compensating for non-final detector alignment Can use all LIA: less bias, more statistics!
message-passing mechanism limited, if at all viableupdate frequency could be too low	 Beam position not identical across PUs is however statistically consistent needs to be stored with event info May require some (not much though) CPU time

Pro

Con

The Solution

We solved the same problem in the CDF/ SVT in real-time with an algorithm which is:

- Fast
 - typically update every 5 seconds
- Accurate
 - Offline-like resolution
- Robust
 - No minimization algorithms used
- Simple
 - Track based
 - Just need to accumulate few track parameters

Strategy:

- Exact xy fit, with z binning
- Robustness improved with:
 - Tail removal
 - Pipelined iterations

Performance

- O(IM tracks/second) on a 3GHz machine
- err(xy) ~ BeamWidth/ Sqrt(Ntracks)
 - [I um @ BW=50um and I0000 tracks]
- I Hz update costs <2% CPU

How often does the beam move?

Beam center at beginning of store normally stable within 20 microns.

Drift during the duration of a store of 20 to 30 microns in x,y (often correlated)

Beam slope more stable (variation <20 microradians)

